Complex Geometry Exercises

Week 9

Exercise 1. Let X, Y be closed complex manifolds. Prove that they are projective if and only their product is. Give two alternative proofs, using

- (i) the Serge embedding, and
- (ii) the Kodaira embedding theorem.

Exercise 2. Let $L \to \Sigma$ be a line bundle on a Riemann surface Σ . Prove the following assertions.

- (i) If deg(L) < 0, then $H^0(\Sigma, L) = 0$.
- (ii) If $deg(L) > deg(K_{\Sigma})$, $H^1(\Sigma, L) = 0$.
- (iii) If $deg(L) > deg(K_{\Sigma}) + 2$, its pluricanonical map ϕ_L is an embedding.

In particular, all Riemann surfaces are projective.

Exercise 3. Prove that the blow-up of a projective manifold is again projective.

Exercise 4. Show that any vector bundle E on a projective manifold X can be written as a quotient $(L^k)^{\oplus l} \to E$ with L an ample line bundle, $k \ll 0$ and $l \gg 0$.

Exercise 5. Show that any vector bundle E on a projective manifold X can be written as a quotient $(L^k)^{\oplus l} \to E$ with L an ample line bundle, $k \ll 0$ and $l \gg 0$.

(continues on the back)

Exercise 6. Prove that a complex torus $\mathbb{T}_{\Gamma} = \mathbb{C}^n/\Gamma$ is projective if and only if there exists an alternating bilinear form

$$\omega: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$$

such that

- $\omega(iu, iv) = \omega(u, v)$,
- ullet $\omega(\cdot, i \cdot)$ is positive definite, and
- $\omega(u,v) \in \mathbb{Z}$ for all $u,v \in \Gamma$

Exercise 7. Let X be a compact Kähler manifold and

$$Alb(X) := H^0(X, \Omega_X)^*/H_1(X, \mathbb{Z})$$

where

$$H_1(X,\mathbb{Z}) \to H^0(X,\Omega_X)^*, \quad \gamma \mapsto \left(\alpha \mapsto \int_{\gamma} \alpha\right).$$

Prove the following statements.

- (i) Alb(X) is a complex torus.
- (ii) Fixing a base point $z_0 \in X$, yields a holomorphic map $X \to Alb(X)$.
- (iii) For $\mathbb{T}_{\Gamma} = \mathbb{C}^n/\Gamma$, the map $\mathbb{T}_{\Gamma} \to Alb(\mathbb{T}_{\Gamma})$ is a biholomorphism.